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OVERVIEW

In this report we describe the research performed at The Ohio State University
on the project Controller Design for Unstable Aeroelastic Systems, sponsored by the
Air Force Office of Scientific Research (AFOSR), between June 15, 1993 and January
14, 1995, under contract F49620-93-1-0288.

The main objective of this research was the robust controller design for active
flutter suppression, in the presence of time delays and neglected dynamics in the feed-
back loop. For this purpose we have developed an algorithm (and implemented on
the computer) which derives a set of finitely many linear equations and computes the
H® optimal and suboptimal controllers for unstable systems with time delays. With
this algorithm we can now compute the effect of time delays on the best achievable
robustness and performance level in unstable aeroelastic systems. Moreover, all sub-
optimal H* controllers are computed for a given system with time delay and dynamic
uncertainty profile. Our algorithm determines the “rational parts” of suboptimal H®
controllers. Such controllers contain an infinite dimensional fixed part, which is the
given time delay. Therefore, the controller is “infinite dimensional.”

The problem of finding a finite dimensional suboptimal controller is also studied
in this project. For the SISO case, it is shown that by approximating the infinite
dimensional parts of the optimal controller (with certain interpolation constraints), a
rational suboptimal controller can be obtained.

In this project we have also performed robustness analyses of controllers designed
for active flutter suppression. Several different robust control algorithms are compared
in terms of the robustness of stability with respect to perturbations in the air speed
and unmodeled small time delays. Our numerical studies on a thin airfoil example
showed that the best results are obtained when weighted gap optimization using H>
optimal control, and p-synthesis methods are employed. Also, studied in the project is
the computational complexity of certain robust control algorithms, such as p-analysis
and synthesis, simultaneous stabilization, and solution to bilinear matrix inequalities
which appear in H>, H? and mixed types of robust control problems. We have shown
that many of these problems are NP-hard, and hence it is not feasible to develop a
polynomial time algorithm to find exact solutions to these problems.

The principal investigator of this project was Hitay ézbay. One doctoral student,
Onur Toker (expected graduation is Summer 1995), was supported by this grant, and
his contributions were as much as the PI’s.

Four journal papers, based on this research, are accepted for publication and three
others are under review. Three of the accepted papers are co-authored by H. Ozbay
and O. Toker, and one of them is single authored by O. Toker. Preliminary versions of
these papers already appeared or accepted for publication in conference proceedings.
A list of publications resulting from this research are given in the last section of this
report.
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1 Introduction

The main goal of this project was to investigate robust control algorithms for unstable
aeroelastic systems, against unmodeled dynamics (mainly due to poor modeling in
aeroelastic loads) and in the presence of time delays in the feedback loop.

A robust control algorithm has been developed for general MIMO unstable sys-
tems with time delays. This methods follows the gap metric approach for uncertain
systems. Also, the general theory for H* control of infinite dimensional SISO plants
have been simplified. The controller expression obtained in this project is so simple
that, computation of the optimal and all suboptimal controllers can be done by using
finite dimensional linear algebra, see [23], [10]. Implementation issues for such con-
trollers have been discussed, and an approximation procedure has been proposed in

130], [29].

Several robust control algorithms have been tested for active flutter suppression
of a thin airfoil, see [26]. In this study it has been shown that even small time delays
(not considered in controller design) may cause instability, or poor performance. The
MIMO gap metric design algorithm developed in this project has also been applied
to this system. The results show closed loop stability with guaranteed robustness
measure, with respect to gap metric. But the controller itself contains time delays and
its finite dimensional parts are very large order. Nevertheless the Bode plots of the
controller indicate that it is easy to find a low order finite dimensional controller which
will do the job, see Section 4 below.

Computational issues of several robust control algorithms are also investigated;
and it is shown that certain analysis and synthesis problems computationally are not
feasible, see [27], [25], [24], and Section 5 below for precise statements of the results.

The rest of this report is organized as follows. In Section 2 robust control prob-
lems for aeroelastic systems are reviewed. In Section 3 control algorithm for MIMO
time delay systems is presented. Applications of different robust control techniques to
active flutter suppression are given in Section 4. In Section 5 certain results concerning
the computational issues in robust control are summarized. Concluding remarks are
made in Section 6. A list of publications based on this project can be found in the last
section.
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2 Robust Control of Aeroelastic Systems

The most common approach for modeling large scale structures is to use linear finite
element (FE) methods. In aeroelastic systems, where there is coupling between the
structure and the air flow, dynamic aeroelasticity equation can be written as (see [1],

[4], [12], [13], etc.),
A4£+Ci+1"$=Faero(j7,$)+Fext. (1)

where 2 is the FE displacement vector, M, C, K are the mass, structural damping and
stiffness matrices respectively; Fyero and Foy represent the aerodynamic forces and the
external (e.g. control, disturbance, noise, etc.) forces respectiveley.

In flutter analysis one looks for singularities of the equation (1), assuming Fiy, =
0. In the flutter suppression problem the purpose is to choose (if possible) Fiy as a
feedback, i.e. Fex(x) is an operator acting on z, such that the closed loop system
is stable. The key difficulty in these problems is the computation of Fiaero, which,
in theory, should be an infinite dimensional nonlinear operator. In practice, Fyep, is
expressed as an output of a linear system whose input is z: in the frequency domain
we have

Faero(jw) = H(jw)X(jw) (2)

where H(jw) is determined from the geometry of the structure, and the aerodynamic
conditions (in particular the air speed V), see e.g. [5] [6] [19] [12] [13], etc. In order to
determine the flutter speed we need to analyze the location of the eigenvalues of the
matrix

A(s) == Ms* +Cs+ K — H(s)

as V' changes. Flutter occurs at the air speed V = V;, which makes A(jw) singular.
In other words V} is the critical air speed at which the aeroelastic system becomes
dynamically unstable.

Since H(s) is impossible to determine precisely, in practice an approximate, say
H,(s), is used in the flutter analysis, and suppression problems. Hence, neglecting
approximation error and parametric uncertainties, which may occur in modeling A7,
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Figure 1: Aeroelastic system model with time delay

C', I, and assuming zero initial conditions and taking the Laplace transforms of both
sides of (1) one gets

X(s) = (M52 +COs+ K~ Hn(s)>_1Fext(s) (3)

as the nominal model to be used in control design, and stability analysis. For feedback
controller design purposes we can think that Fey(t) = Bou(t), where the vector u(t)
represent the command inputs, which are the outputs of a controller, whose inputs are
the measured outputs. The mesured outputs are represented in one vector y(t), given
by

y(t) = Cox(t) + wi(2),

where w; () is the measurement noise. The noise is assumed to be the output of a filter
W (s) whose input is a finite energy signal w(t). Here By, By, Cy, are appropriate size
matrices. A block diagram of this aeroelastic system model is shown in Figure 1, where
D(s) represents possible time delays in the feedback loop, and B, W,(s) can be seen as
the actuator disturbance or an artificial noise which accounts for unmodeled dynamics.

In the literature, several different control schemes for active flutter suppression
have been reported, see e.g. [9] and references therein. But none of these controllers
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Figure 2: Standard feedback configuration

take into account the unmodeled dynamics or possible time delays in the feedback loop.
In the following section feedback controller design for this type of input /output models
of the aeroelastic system will be discussed.

3 A Robust Control Algorithm for MIMO Time
Delay Systems

Now, the aeroelastic plant model developed in the previous section can be written as

P(*S) = e_TSPO(S)a

where e™7* = D(s) is the delay, and

P,(s)=Cy(Ms*+Cs+ K — H,(s))"'B,

is a strictly proper rational m X n transfer matrix. The feedback control system is
shown in Figure 3, (here C'(s) is the controller, and P(s) is the plant, r is the reference
input, d is the disturbance). The closed loop system [P, C] is said to be stable if the

entries of all transfer function matrices (I — CP)~!, (I — CP)~'C, P(I — CP)™!, and




P(I — CP)7'C belong to H*. When the closed loop system is stable we can define

-1

bpo = lH;;] (I-CP)'[I —C]

o0

as the stability robustness level of the system [P, C]. Larger the bpc more robustness
we have against unmodeled normalized coprime factor perturbations of P, see [8]. With
this definition, closed loop systems [Py, C] are stable for all Ps, which belongs to a gap
ball of radius ¢ around P, if and only if § < bpc. Hence, for a given plant P, the
optimal robustness radius can be defined as

bopt(P) = sup bpc.
C stabilizes P

In [18], it is shown that, by, (P) can be computed using state space techniques. The
above problem is called the gap metric optimization problem, and has another interpre-
tation in terms of the (unweighted) coprime factor perturbations of the original plant.
Namely, if P = NM~! is a normalized coprime factorization, the above optimization
problem corresponds to finding the maximum e such that there exists a controller ¢
which stabilize all PA = (N + An)(M + Ap)™! with ||[An Ap]|les < €. This

maximum ¢ value is equal to b, (P).

The suboptimal robustness problem is to find a parameterization of the set
c, = {C . [P,C] stable , bpe > 7}. (4)

This problem is equivalent to parameterizing all controllers C' which robustly stabilizes
P against all coprime factor perturbations of the form

1

AN Al <77 = VES]

for a given desired robustness level 4. The main result of this section is a parameter-
ization of C, obtained in terms of the state space realizations of P,. The algorithm
summarized below has been implemented using MATLAB commands.

-~1




Outline of the procedure:

Let (A,, B, C) be a minimal realization of P,(s), then find the stabilizing solution
Rr of the algebraic Riccati equation

A,Rp 4+ RpA, — ReC"CRp+ BB* =0 (5)
and let A=A, + HC where H = —RpC*. Then

F(s):= [~N,M] = [~C(s] = A) Be™™, I, + C(s] — A)H].
Similarly, find the stabilizing solution Rg of the algebraic Riccati equation

A’Rg + RgA, — ReBB*Re +C*C =0 (6)
and let A = A, + BHg where Hg = —B*Rg. Then

Q) M _ Iﬂ-{-Hg(SI'—Ag)_IB]
Gls) = [N] B [ C(sl — Ag)™*Be™Ts |-

Since P = NM~! = M-IN 1s a coprime factorization (in fact normalized coprime
factorization), there exist U, V,U,V € H* such that the generalized Bezout equation

[x( —A(A/'HM U]_[M UHf{ —AU]_[Jn 0] -
—N MIIN V]TIN VII-N MmMI|Tlo0o I, (7

holds. To parameterize the set of all suboptimal controllers, first choose a positive real
number a. Then, let 22, y! € H; be the solution of

. . . I, 1 2
Fszo = —py; and Tjy; :_pmo+73+a’ (8)
and z2,y% € H, be the solution of
In
s, = —py, and Iy, =—pal—— ! , (9)
ps—a




where the Hankel operator I'; is defined as

U
T, = I1,,,G [v] i, -

In [22], we discussed how to obtain numerical solutions of (8,9) using state space
techniques.

Given numerical solutions of (8,9), define

T
Gaax = Raz;(@)] 7/ >>0 Ghax = 20(a2(@)) 1747 5> 0
T
Piar(s) = p(s + a)2i(s) Gk Piar(s) = p(s +a) (xz(-g)) Ghax

T .
Qharts) = p(s =) (13(5)) Cha  Qhar(s) = s — )y2(6) G

where >> stands for positive definite square root.

Then, the set of all suboptimal controllers can be parameterized as :
Cy = {[Nea(s) + Neo(s)E(8)][Den(s) + Dea(s)E(s) ™"+ €€ HY ||€]l <13,

where

Nea(s) = [pM(8)Qhax(—s) — N*(S)PAAK(S)]
Nep(s) = [pM(s)Pisr(=s) — N*(s)Q%ax(s)]
Dea(s) = [pN(s)Qhar(=3) + M*(s)Piax(s)]
Dep(s) = [pN(s)P3ap(=5) + M*(5)Q%4x ()]

Note that all suboptimal controllers are expressed as linear fractional transformation
of £, with coefficients determined by N, M, N, N and solutions of (8,9).

In the next section the Bode plots of a controller obtained from the above pro-
cedure is presented for an active flutter suppression problem. For the same problem,
results of different robust control algorithms are also given in the next section.
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Two dimensional thin airfoil

Figure 3: Two dimensional thin airfoil, o’ observation points, 'x’ actuator locations

4 Applications to Active Flutter Suppression

The purpose of this section is to give a comparison of different robust controller design
techniques for a linear model of a two dimensional thin airfoil described in [7].

4.1 Mathematical Model of the Plant

Consider the two dimensional thin airfoil, of length £ = 0.305m and with ¢ = 0.076m,
shown in Figure 3. In this system two point force actuators are located at z = 3¢ /4,
y = %¢/2, and vertical displacements w(z,y,t) at z = 0.3(, y = +0.3¢ are assumed to
be available for feedback control.

The mathematical model of this system is taken from [7], and it is as given below.

2 d2a(t t
(M — ”ZC M, dqt(2 ) _ Wpc"’Ca_%)- + [N — 7pV?K,)q(t)

—mpcV Dy (t) — mpeV Dany(t) = TTF(t) =0,  (10)

10




dn(t) 2V dq(t)
di = —0.041 o I57h(t) - A4 dt? +
dnalt) 2V dq(1)

where the entries of 2 x 1 vector

represent the control forces (to be generated by the feedback controller), the entries of
5 x 1 vector ¢(t) are the generalized coordinates, and the entries of 5 x 1 vectors n;(t),
112(t) are the generalized aerodynamic coordinate vectors. The nominal value of the air
speed (in the direction of y-axis) is taken to be V = 30m/sec, and the other constants

are
p = 1.225kg/m?
¢ = 0.0 m
{ = 0.305m
r 1.315 1.315
0.270 0.270
I'"=| 0.631 —0.631],
—0.081 —-0.815
0.800 0.800
r 0.000 0.000 0.289 -0.015
0.000 0.000 0.015 0.294
K, = 0.000 0.000 0.069 0.000
0.000 0.000 0.000 0.072
L 0.000 0.000 0.037 0.042
-0.305 0.000 0.144 -0.007
0.000 —0.305 0.007 0.147
C,=1|-0.072 -0.037 0.000 0.000

0.004 -0.074 0.000  0.000
—0.037 —0.045 -0.009 -0.010

11




Dy

= —0165]5, D2 = —0355]5,

0.0000
0.0000
0.0000
0.0000
0.0034

0.0000
0.0000
0.0000
—0.0090
0.0000

—0.0056
—0.0573
—0.0452
0.3012
0.0268

0.0283 0.0000 0.0000 0.0000
0.0000 0.0283 0.0000 0.0000
M = 10.0000 0.0000 0.0021 0.0000
0.0000 0.0000 0.0000 0.0021
0.0000 0.0000 0.0000 0.0000
—0.3050  0.0000  0.0000
0.0000 -0.3050  0.0000
M, =1 0.0000 0.0000 —0.0090
0.0000  0.0000  0.0000
0.0190  0.0230  0.0000
0.0121  0.0000 —0.0046
0.0000  0.4749  0.0332
K =10"|-0.0046  0.0332  0.0326
—0.0056 —0.0573 —0.0452
0.0328 —0.2502 —0.0691
C T
b2
As= | 3¢3|[d1 ¢2 —3d3 —1gs c9s1,
%9’54 ‘
[ 165
C T
é2
As=|3¢3[[0 0 ¢35 ¢4 —245],
i
-697)5-

0.0190
0.0230
0.0000 |,
0.0000
—0.1140

0.0328
—0.2502
~0.0691 | ,

0.0268

3.3105

¢ = cosl‘l(n[%,l:z?) - COS(%) — 0.7340955 [sinh(zz—lx) - sin(%l-:zf)} ,

¢ = cosh(n(%z:c

) — cos(

%)

(

12

n

) — 1.01846644 [sinh(?—zza:) - sin(-fz-a:)] :

4




2sin(g,4) + go f1 sinh( f1£
ot i+ (SISO ()t

g% sin(gzl) + go f2 sinh( fof)
GEcos(g20) 1 J2 cosh(fo0)

¢4 = sin(gyr) — gsmh(f ) + (

) (cosl1(f2:c) - cosh(gzl")),
¢s=1— cos(%—;x),

where

np = 1.8751041

nyg = 4.69409113
fi = 9.193529
fo = 17.022282
g1 = 6.373793

g = 15.679999

The measured outputs, y; and y,, are vertical displacements at the ohservation points
indicated by ’o’ in Figure 3, i.e.

v1(t) = w(0.3(,—0.3¢,t),  ya(t) = w(0.3¢,0.3¢, 1)

where

Yi(a,y) = di(x)ei(y)

aly) = 62(y) =1
es(y) = es(y) = y/c
es(y) = 4y*/?—1/3

In general, for point force actuators located at (z1,y1),...,(2p,¥y,), the matrix T is
given by

71(-171ay1) 75(-T1,y1)
F — . .

’)"1(1';.17 yp) <o 75(-737)’ yp)

13




4.2 Flutter Comparisons

Now consider the plant described above with transfer matrix P,(s), which depends
on V' (in this section we assume that there is no time delay is the system). The
open loop system and the closed loop system stability is analyzed, and the results
are shown in the following figures. We see that for the open loop system the flutter
speed is V; = 17.2m/sec. We designed controller for the nominal air speed V =
30m/sec, which means that the open loop system is unstable at this operating point.
The figures 5-9 illustrate stability robustness with respect to perturbations in V, for
controllers designed using LQG, unweighted and weighted gap, H> mixed sensitivity,
and g synthesis techniques. The results can be summarized as follows:

[ controller | admissible V (m/sec) |
0 (open loop) 0.00 <V <17.20
LQG 5.37 <V < 30.49
gap (unweighted) 29.51 < V < 30.22
gap (weighted) 11.89 <V < 40.01
H*> (mixed sensitivity) | 10.35 < V < 40.15
(t synthesis 10.27 < V < 40.24

The optimal controller guarantees robust stability for all plants of the form
P(s) = Py(s) + Aq(s), where the uncertainty is bounded by r,(jw) > ||A.(jw)],
l.e. To(jw) can be seen as a measure of the stability margin. For the flutter suppres-
sion problem considered here. The plot of the largest allowable additive uncertainty
magnitude, r,(jw), versus w is shown in Figure 10, for two different time delays 1msec
and 10msec, for three different nominal V, 30m/sec, 50m/sec and 200m/sec. As the
time delay and V increases the robustness level decreases almost uniformly in the fre-
quency spectrum. The additive uncertainty is allowed to be large in the frequency
range 1rd/sec to 100rd/sec.

4.3 Effects of Time Delays

Consider the controllers Cy= and Crgg obtained from the H* and LQG designs when
a time delay of Imsec is neglected. Time domain responses (the initial, t = 0, and
the final, ¢ = 4.0sec, shapes of the structure) to a unit gust disturbance are shown in
Figures 11 and 12, for the closed loop system with no delay and 1msec delay. We see
that the H> (LQG) controller is (is not) robust to unmodeled time delay of 1msec.

14
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Figure 10: Largest Allowable Additive Uncertainty

Of course, it is better to include the time delay in the plant model, if it is known.
In this case a controller can be designed to achieve better performance and stability
properties. Optimal robustness level b,,;, corresponding to this aeroelastic system (with
transfer matrix P(s) = e~7*1000F,(s), where P, depends on the air speed V) for three
different values of V, as a function of the time delay T'is shown in Figure 13. Since the
unweighted gap does not give a reasonable robustness with respect to perturbations in
V' we chose to design a weighted gap for the original plant scaled by 1000. Note that
time delays in the order of 10msec leads to poor robustness. That is, bopt 1s considerably
smaller when delay is around 10msec or higher. Whereas time delays up to 0.2msec do
not affect the optimal robustness level significantly. The same figure also shows that
as V increases the optimal robustness level bop: decreases.

For the numerical values V = 30m/sec T = 1msec, we find that optimal weighted
gap robustness is b,,,, = 0.32. If we choose by, = 0.30 as the suboptimal robustness
level, and apply the controller design algorithm we developed for MIMO unstable delay
systems we obtain a controller C(s) which gives bpc = 0.30. Note that in this numerical
example the controller is a 2 x 2 transfer matrix of the form

C(s) = (D + Bu(sT — A2)"'Cy) ((Dd + By(sI — A)"1Cy)

-1
+€™7*(Dag + Baa(sT — Add)—lcdd)) :

The MATLAB based program written for this problem generates the matrices D,
B, Ay, Cny Dq, By, Aq, Cq, Dyq, Baa, Aggy, Caa. In this example it turns out that
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Figure 11: Initial and final shape of the structure with H* control
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the matrices A,, Aq and Agy have dimensions 294 x 294, 236 x 236, and 114 x 114
respectively. Therefore, the finite dimensional parts of the controller is very high order.
However, the magnitude and phase plots of the entries of the controller suggest that
there should be a low order approximation. At this point any approximation algorithm
can be used (see [11] and references therein) to implement a low order controller.

5 Remarks on the Computational Aspects

This section summarizes the results obtained, during the project, on computational
aspects of certain robust control problems.

5.1 H* control of SISO infinite dimensional plants

Consider the closed loop system shown in Figure 15, where P(s) and C(s) are the
transfer functions of the plant and the controller respectively. In this section we give
a very simple expression for the H* optimal and suboptimal controllers. These con-
trollers are computed by solving a finitely many linear equations, which can be written
directly form the controller structure.

It is assumed that, the plant has finitely many unstable poles denoted by as, ..., ay,
and the transfer function can be factored as

(3 YN (s s
M () No(s) where ma(s) = ] Qk,
mq(s) b= S

P(s) =

m, € H* is inner (i.e. all-pass function) possibly infinite dimensional, and N, € H>
is outer (i.e. minimum phase) possibly infinite dimensional. It is also assumed that
aty ..., € ¢4 are distinct. Let S= (14 PC) ' and T =1— S, and Wy, W, be given
weighting functions. The optimal mixed sensitivity problem is to find

= inf
o C' stabilizes P

(13)

wir|
72T -

and the optimal H> controller, denoted by C,p, corresponding to the optimal perfor-

8]
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mance level 7,. That is, C,, stabilizes the plant P, and yields

” [ Wi(1 + PCOPt)—l }
”'IQPCO]JT(I + Pcvopt)_l

= Y.

The suboptimal mixed sensitivity problem is to parameterize the set

c, = {c . O stabilizes P, “[ 325, J“w < p} (14)

for a given desired performance level P> Yo

In this section, it is assumed that W;(s) and Wa(s) are rational functions. For
properness of the optimal controller it will be assumed that Wi(s) is non-constant and
Wi, (WyN,) and (W,N,)"! € H®.

Let n1,...,n,, € €4, be the poles of Wi(=s) (if n; has multiplicity ¢; then it is
assumed to be repeated ¢; times in this list), and set

E.(s) := <w - 1) . (15)

,-)/2

The zeros of E.,(s) are denoted by 4, ... s Ban, . Suppose they are distinct for a chosen 7.
Then, f;’s can be enumerated in such a way that f,..., 3, arein € , and Bny+i = —pi.
Now define '

n

. — 8 .
Fy(s) = Go(s) [] Zi — (16)
k=1 Ik
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where G, € H* is minimum phase and determined from the spectral factorization

G (8)G(—s) = (1 - (R ) Ew(s))_ . (17)

Then (under certain genericity assumptions-see [28]) the optimal H* controller is given

by

No(s) ™' F, (s)L(s)
14+ mu(s)F,,(s)L(s)

Copt(s) = Eo,(s)ma(s) (18)

where L(s) = L(s)/Li(s), and Li(s), Ly(s) are polynomials of degrees less than or
equal to (771 + [ — 1) and they satisfy

0= Ly(Br) + man(Bi) oo (Br) L2(Br) k=1,...,m (19)

= Li(ar) + ma(ar)Fy (o) La(ag) k=1,...,1 (20)
0= Lo(=Pk) + ma(Bi) Foo(Be) L1 (=Bk) k=1,...,n (21)
0= Ly(—ar) + mup(ap)Fy(ar) La(—ar) k=1,...,L (22)

In general, if 7, is replaced by a variable, say 4, in equations (19-22), then a new set
of linear homogeneous equations is obtained, in terms of 2(n; + ) unknown coefficients
of Ly and Ly, for each fixed v. In [28] it was shown that, under certain genericity
assumptions, 7, is the largest value of v for which there is a non-trivial solution to
these 2(n; + ) linear homogeneous equations. That is, 4, can be found by plotting
smallest singular values of the matrix representation of these equations, as ~ varies in
an interval. The largest value of 4 for which the plot shows a zero is 7,. It was also
shown that, see [28], in the optimal case Ly(s) = L;(—s) and hence the number of
unknown coefficients in these coefficients reduce to ny +1; and these can be determined
from (19,20).

Similarly, all suboptimal H* controllers are in the form

N, .
Cus3) = Byfemals) ol Selule) (29
where
_ La(s) + Ly(—s)U(s)
Lols) Li(s) + La(=s)U(s) ' veb
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and Ly(s), Ly(s) are polynomials of degree < n; + [ satisfying (19-22) with 5, replaced
by p, and the following two conditions:

0= Ly(—a)+ (Ey(a) + 1) Fp(a)ma(a) L1 (~a) (24)
1= Li(~a), (25)

for some arbitrary @ € R, ¢ > 0, a # a;’s and a # B;’s for all ¢ = 1,...,] and
J=1,...ny. In (24,25) a is a free parameter. For different values of ¢ one can obtain
different parameterizations of the suboptimal controllers.

5.2 Finite Dimensional H* Controllers via Approximations

The structure of H* controllers (optimal and suboptimal) is given in the previous
section, and it is shown that for distributed systems, the H* optimal controller is
not rational. Therefore, the question of obtaining a stabilizing finite dimensional H*
controller, whose performance is “close” to optimum, arises naturally. If a controller
satisfies this requirement, then it is said to be “approximately optimal.” One can
approximate the infinite dimensional parts of the optimal controller to obtain such a
controller, and this method has been studied before [17] for stable plants. For un-
stable plants it was shown that [14] if coprime factors of the optimal controller are
approximated separately, then under mild conditions, the resulting finite dimensional
controller is approximately optimal. However, computation of the coprime factors of
the optimum controller requires construction of a complicated system of linear equa-
tions, (compare the formulae of the previous section with the ones in [16, 14]).

One possible approach to obtain a finite dimensional controller C; from the con-
troller C' given in (18) is to approximate the infinite dimensional parts of the controller,
N:' and m,, by rational functions, No'f1 and my,ys, and obtain

N} ()F,(s)L(s)
T 1y () Fon () (5).

Cy = By (s)mals) (26)
Define
Sf = (1 + PCf)_l, Tf =1- Sf, Sopt = (1 + PCopt)—l, Topt =1- Saph

F.L

Am =TT TS
" 14+ mpF, L

(Mmpy — my,), Ay, =1- No_f]NO.
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The following lemma gives a set of sufficient conditions for the closed loop system
(P, CY) to be stable.

Lemma 1: The closed loop system (P, Cy) is stable if

(i) my,y interpolates m, at a;’s, B;’s in €, and jw axis zeros of L; + m, F, Ly,

(i) sup [Ap,| <1,
weR

) s (15 ) S ) + oW )N () Voi) Aoy () < 1,
w€

(iv) 1= N3'N, € H*.

Now. let us consider the performance of the closed loop system (P, C}).

Lemma 2: The following conditions guarantee that the performance (P, C 7) of the
closed loop system (P, Cy) will be between 5, and 7, + €

() sup W) An ()] < 51~ o),

() sup W) A, ()] < g5(1 =)
(i) sup W () A )| < 423(1 ~¢), and
(V) sup Wy (jw) A, (jw)] < 4;3@ ~e),

wER

where € is a positive real number less than 1.

Note that, since E%QTTL'\M—L strictly proper, approximation conditions on m,s can be
interpreted as a uniform approximation in the low frequency range subject to certain
interpolation conditions in the closed right half plane. Interpolating both the values of
m, and its derivatives at §’s gives better m,;’s functions which is likely to decrease
the value of the expression

(M) = Mg (jeo)) Fy(jw) L(jw)
1+ m,(jw)Fy(jw)L(jw)
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around ¢;’s. Note that the supremum of this expression over jw axis appears as one of
the conditions of Lemma 1.

We refer to [23] and [29] for a numerical example illustrating the approximation
procedure proposed in this section.

5.3 On the NP-hardness of certain control problems

In this section we simply state the main results of the papers [27] and [25], on the
computational complexity of certain robust control problems. The reader is refered to
the full versions of these papers for complete details.

In [27], it is shown that for a given complex matrix M, and a purely complex
uncertainty structure A, the problem of checking whether the inequality

(min{om(A) : A€ A, det(] — MA)=0})"! = pa(M) < 1

holds, is N'P-hard. It is also shown that, the problem of checking whether the frequency
domain y, ||M(s)||., of an LTI system, M(s), is less than 1, and the problem of checking
whether the best achievable g,

inf |F(T, Qllu,

QEH™

of a linear fractional transformation (LFT), F(T,Q), is less than one, are both N'P-
hard problems. In other words, purely complex x4 computation, analysis/synthesis are

N7P-hard.

It was known that the computation of x is NP-hard for purely real [20] and mixed
real/complex [3] uncertainty structures, but these results do not give much information
about the computational complexity of the purely complex u problem, nor they imply
much about complexity of the y analysis/synthesis problems. Although general H®
norm computation, analysis/synthesis have a well established theory for LTI systems,
there is no known non-conservative polynomial time procedure for purely complex u
computation, analysis/synthesis problems. In this part of the project, [27], we gave
proofs of the NP-hardness of the above mentioned problems. These results imply
that it is rather unlikely to find non-conservative polynomial time procedures for the
purely complex p computation, analysis/synthesis problem, contrary to the standard
H® problems.
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As independent results, it is also shown that, [27], the problem of checking the
stability and the problem of computing the H* norm, are both A"P-hard problems
for multidimensional systems. These results imply that it is rather unlikely to find
a simple analogue of the Schur-Cohn test for checking the stability and an efficient
generalization of bisection method of [2] for computing the H* norm, in the context
of multidimensional systems.

A matrix valued function, F'(X,Y'), is called bilinear if it is linear with respect to
each of its arguments. An inequality of the form F(X,Y") > 0is called a bilinear matrix
inequality (BMI). Recently it has been shown that many robust control problems can be
transformed to finding a solution to bilinear matrix inequalities (BMIs). For example
the static output feedback problem and fixed order robust controller design problem
can be put in this framwork. In [25] we have shown that the problem of checking the
solvability of a given BMI is NP-hard. Although BMI approaches to robust control
seems to be a potentially powerful tool, it is rather unlikely to find a polynomial time
algorithm for solving general BMI problems. In [25] it is also shown that simultaneous
stabilization with static output feedback is an NP-hard problem, namely given n plants,
the problem of checking the existence of a static gain matrix K which stabilizes all of
the n plants, is NP-hard.

5.4 On the order of simultaneously stabilizing compensators

In this project the problem of simultaneous stabilization using a dynamic compensator
has also been studied. The results will appear in [24], where it is shown that there is
no upper bound for the minimal order of a simultaneously strongly stabilizing com-
pensator, in terms of the given plant orders. A similar problem was also considered in
[21], where it was shown that such a bound does not exist for the strong stabilization
problem of a single plant. But the examples given in [21] were forcing an approximate
unstable pole-zero cancellation, or forcing the distance between two distinct unstable
zeros to go zero. In [24] it is shown that: (i) if approximate unstable pole-zero cancel-
lation does not occur, and the distances between distinct unstable zeros are bounded
below by a positive constant, then it is possible to find an upper bound for the min-
imal order of a strongly stabilizing compensator; (ii) and for the simultaneous strong
stabilization problem (even for the two plant case), such a bound cannot be found.




6 Conclusions

In this project robust control techniques are investigated for unstable aeroelastic sys-
tems. A new algorithm is developed (and its MATLAB based program is written)
for MIMO delay systems to optimize robustness measured in the gap. The algorithm
can easily be modified to obtain controllers from weighted gap optimization method.
Numerical simulations have shown that when time delays are neglected in the design
of LQG, gap, loop shaping via weighted gap, H*, and u controllers, the closed loop
stability may be lost or the performance may be poor as far as flutter suppression
problem for a thin airfoil is concerned. Our algorithm has been tested on the same
example, and an approximable infinite dimensional controller is obtained.

In the SISO case numerical computation of H* controllers is simplified consid-
erably. A simple MATLAB based program is written to compute the optimal perfor-
mance, optimal controller, and all suboptimal controllers. Also, a numerical approxi-
mation procedure is developed to derive finite dimensional suboptimal controllers for
general infinite dimensional plants.

Computational complexity of certain control algorithms are studied. In particular
it is shown that purely complex p computation, analysis and synthesis problems are
NP-hard; and so are the problems of simultaneous stabilization with static output
feedback and solution to bilinear matrix inequalities. It is important to note that
the above problems have been considered by many researchers in the past, and no
polynomial time algorithmic procedure has been developed for exact computation. The
results of this research indicate that it is practically impossible to find a polynomial
time exact computation procedure for the above mentioned problems. So, the scientific
community should be satisfied with approximate solutions, which are computationally
more feasible.

As far as the aeroelasticity application (flutter suppression), simulations show
that H> based controllers give good robustness and performance compared to more
conventional LQG method. Of course in both cases weight selection is a major issue.
Even though we now have tools to compute H* and LQG controllers, in many cases
for a given set of weights and the plant the “central controller” is unstable (see [15)]
for a aircraft pitch angle command tracking, and gust alleviation examples). On the
other hand for safety reasons, in the actual implementation, unstable controllers are
undesirable. Therefore, it would be a major contribution if one develops methods to
determine stable suboptimal controllers. The PI will be focusing on this problem in
the future.
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